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Abstract. Some of the analytical properties of the four-wave interaction equations derived
previously by the present authors are studied. The equations are shown to be Hamiltonian and
to have, at least, four conserved densities. Solitary wave solutions of the equations are also
considered by means of a modified Hirota method.

1. Introduction

The linear dispersion relation corresponding to transverse waves in micropolar elastic solids
has two branches, the so-called acoustical branch which involves low frequencies and the
optical branch which involves a range of higher frequencies [1]. In [2], making no distinction
between transverse acoustical and optical branches and using the reductive perturbation
method, Erbayet al show that the slowly varying complex amplitudes of the transverse
(displacement or microrotation) waves are governed by the following set of two coupled
nonlinear Schr̈odinger (NLS2) equations:

iφτ + 0T φξξ + [11|φ|2 + (11 + 212)|ψ|2]φ = 0
iψτ + 0T ψξξ + [11|ψ|2 + (11 + 212)|φ|2]ψ = 0 (1)

where the variablesτ andξ are the dimensionless time and space coordinates, respectively,
in a reference frame moving at the group velocity, and the coefficients0T , 11 and12 are
real functions of wavenumber and material parameters. Here and hereafter, subscriptsτ and
ξ denote partial differentiations. The functionsφ andψ are the complex amplitudes of two
circularly-polarized transverse waves and are written in terms of the complex amplitudes,
8 and9, of two linearly-polarized transverse waves as follows:

φ = (8 − i9)/
√

2 ψ = (8 + i9)/
√

2.

Note that in (1), the nonlinear interaction between the transverse waves belonging to one
of the branches (acoustical or optical) has been considered only. It has been shown by
Zakharov and Schulman [3] that theNLS2 equations are not in general integrable by inverse
scattering transform.

In [4] the nonlinear interaction between modulated transverse acoustical and optical
waves having equal group velocity has been investigated. In such a case, there exist
four transverse modes simultaneously present in the medium. While each of these modes
propagates at the same group velocity, acoustical and optical waves can have different
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wavenumbers and phase velocities. Using the reductive perturbation method, it is shown
that the slow modulation of the complex amplitudes of circularly-polarized transverse waves
is described by the following four coupled nonlinear evolution equations:

iφ1τ + 01φ1ξξ + [111|φ1|2 + (111 + 2112)|ψ1|2 + ν11|φ2|2 + ν12|ψ2|2]φ1

+(ν13φ2ψ∗
2 + ν14φ

∗
2ψ2)ψ1 = 0

iψ1τ + 01ψ1ξξ + [111|ψ1|2 + (111 + 2112)|φ1|2 + ν11|ψ2|2 + ν12|φ2|2]ψ1
+(ν13φ

∗
2ψ2 + ν14φ2ψ∗

2)φ1 = 0
iφ2τ + 02φ2ξξ + [121|φ2|2 + (121 + 2122)|ψ2|2 + ν21|φ1|2 + ν22|ψ1|2]φ2

+(ν23φ1ψ∗
1 + ν24φ

∗
1ψ1)ψ2 = 0

iψ2τ + 02ψ2ξξ + [121|ψ2|2 + (121 + 2122)|φ2|2 + ν21|ψ1|2 + ν22|φ1|2]ψ2
+(ν23φ

∗
1ψ1 + ν24φ1ψ∗

1)φ2 = 0 (2)

where φj and ψj (j = 1, 2) (here and hereafter,j takes the values 1 and 2 only and
subscripts 1 and 2 correspond to acoustical and optical branches, respectively) represent
the complex amplitudes of two pairs of two circularly-polarized transverse waves and the
coefficients0j , 1j1, 1j2, νj1, νj2, νj3 andνj4 (j = 1, 2) are real functions of wavenumbers
and material parameters. In the above four-wave interaction (FWI) equations, the second
terms represent the dispersive effect and the nonlinear terms are of two types, i.e. the first
two terms inside the brackets and all the remaining nonlinear terms. The first two terms
inside the brackets describe the interaction of a wave with itself and the mutual interaction
of pairs of waves belonging to the same branch, respectively. However, all the remaining
nonlinear terms describe the interaction between waves belonging to two different branches.
It should be also pointed out that, in the absence of the last terms, theFWI equations reduce
to a system of four coupled nonlinear Schrödinger (NLS4) equations.

In the present study, we establish some properties of theFWI equations given by (2).
We show that theFWI system is a Hamiltonian system and admits at least four conservation
laws. We also apply a modified Hirota method and obtain particular exact solutions of the
system for certain choices of the coefficients. These solutions reduce to hyperbolic secant
type envelope solitary wave solutions at the decoupled case in which acoustical or optical
waves only exist in the medium.

2. Hamiltonian formulation and conservation laws

The NLS2 equations are already known to be Hamiltonian [5]. Furthermore, for a special
form of theFWI equations and without considering spatial variations, a complex Hamiltonian
formalism is given in [6]. In this section, we first consider the Hamiltonian nature of the
FWI equations and show that system (2) is a Hamiltonian system.

System (2) is derivable from a Lagrangian densityL provided the coupling coefficients
νjl (j = 1, 2; l = 1, 2, 3, 4) satisfy the following conditions:

ν11 = ν21 ν12 = ν22 ν13 = ν23 ν14 = ν24. (3)

In such a case,L is given by

L = L1 + L2 − L12 (4)

whereLj (j = 1, 2) corresponds to theNLS2 Lagrangian

Lj = 1
2i(φjφ

∗
jτ − φ∗

j φjτ + ψj ψ∗
jτ − ψ∗

j ψjτ ) + 0j (|φjξ |2 + |ψjξ |2)
− 1

21j1(|φj |4 + |ψj |4) − (1j1 + 21j2)|φj |2|ψj |2
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in which the last term represents the interaction between acoustical waves (j = 1) or optical
waves (j = 2), andL12 represents the interaction Lagrangian

L12 = ν11(|φ1|2|φ2|2 + |ψ1|2|ψ2|2) + ν12(|φ1|2|ψ2|2 + |φ2|2|ψ1|2)
+ν13(φ

∗
1ψ1φ2ψ∗

2 + φ1ψ∗
1φ

∗
2ψ2) + ν14(φ

∗
1ψ1φ

∗
2ψ2 + φ1ψ∗

1φ2ψ∗
2)

which includes the terms resulting from the interaction between acoustical and optical waves
only. Note thatLj (j = 1, 2) andL12 are real functions of their complex arguments.

Canonical momentaπj (ξ, τ ), π∗
j (ξ, τ ), 5j(ξ, τ ) and5∗

j (ξ, τ ) (j = 1, 2) are defined by

πj = ∂L
∂φjτ

= − i

2
φ∗

j π∗
j = ∂L

∂φ∗
jτ

= i

2
φj

5j = ∂L
∂ψjτ

= − i

2
ψ∗

j 5∗
j = ∂L

∂ψ∗
jτ

= i

2
ψj . (5)

Then, the Hamiltonian densityH and the HamiltonianH are given by

H =
2∑

j=1

(πjφjτ + 5j ψjτ + π∗
j φ∗

jτ + 5∗
j ψ∗

jτ ) − L

= L12 +
2∑

j=1

[−0j (|φjξ |2 + |ψjξ |2) + 1
21j1(|φj |4 + |ψj |4)

+(1j1 + 21j2)|φj |2|ψj |2] (6)

and

H =
∫

H dξ

respectively. From the Hamiltonian formulation of the variational problem, the following
Hamilton canonical equations are obtained

φjτ = i
δH

δφ∗
j

ψjτ = i
δH

δψ∗
j

φ∗
jτ = −i

δH

δφj

ψ∗
jτ = −i

δH

δψj

(j = 1, 2) (7)

which implies that the complex wave amplitudes and their complex conjugates serve as the
canonical variables. The Poisson bracket is defined in terms of these conjugate variables
(φj , φ

∗
j ) and (ψj , ψ∗

j ) as follows:

{F, G} = i
∫ 2∑

j=1

(
δF

δφj

δG

δφ∗
j

− δF

δφ∗
j

δG

δφj

+ δF

δψj

δG

δψ∗
j

− δF

δψ∗
j

δG

δψj

)
dξ. (8)

It is possible to prove by direct calculations that system (2) is recovered from the
Hamiltonian formalism. From (6)–(8), we have

φjτ = {φj , H } = i
δH

δφ∗
j

ψjτ = {ψj , H } = i
δH

δψ∗
j

(j = 1, 2)

φ∗
jτ = {φ∗

j , H } = −i
δH

δφj

ψ∗
jτ = {ψ∗

j , H } = −i
δH

δψj

(j = 1, 2). (9)

These equations yield system (2) and its complex conjugate. This confirms that system (2)
is a Hamiltonian system.

We may ask whether system (2) is integrable or not. It is well known that there exist
an infinite number of conservation laws for most integrable Hamiltonian nonlinear partial
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differential equations. However, only a few of these conservation laws seem to bear any
plausible physical interpretation. Even if the number of conservation laws is limited, the
information may be useful for analytic and numerical computations.

The construction of conserved quantities is based on symmetry arguments. In other
words, the symmetries of system (2) are of fundamental importance to the analysis. System
(2) is clearly translation invariant inξ andτ . Morover, it has the following gauge symmetry;
that is(eiαφ1, eiαψ1, eiβφ2, eiβψ2) is a solution of system (2) whenever(φ1, ψ1, φ2, ψ2) is a
solution. The four continuous symmetries (translation inτ , translation inξ and the gauge
symmetry) generate, by Noether’s theorem, four conservation laws. These conservation
laws are given as follows:

∂Dk

∂τ
+ ∂Fk

∂ξ
= 0 (k = 1, 2, 3, 4) (10)

in which the conserved densities,Dk, and the fluxes,Fk, take the form

Dj = |φj |2 + |ψj |2 (j = 1, 2)

D3 = i
2∑

j=1

(φ∗
j φjξ − φjφ

∗
jξ + ψ∗

j ψjξ − ψj ψ∗
jξ )

D4 = L12 +
2∑

j=1

[−0j (|φjξ |2 + |ψjξ |2) + 1
21j1(|φj |4 + |ψj |4) + (1j1 + 21j2)|φj |2|ψj |2]

(11)

and

Fj = i0j (φjφ
∗
jξ − φ∗

j φjξ + ψj ψ∗
jξ − ψ∗

j ψjξ ) (j = 1, 2)

F3 = 2L12 +
2∑

j=1

{0j [φ∗
j φjξξ + φjφ

∗
jξξ + ψ∗

j ψjξξ + ψj ψ∗
jξξ − 2(|φjξ |2 + |ψjξ |2)]

+1j1(|φj |4 + |ψj |4) + 2(1j1 + 21j2)|φj |2|ψj |2}

F4 =
2∑

j=1

0j (φ
∗
jτ φjξ + φjτφ

∗
jξ + ψ∗

jτ ψjξ + ψjτ ψ∗
jξ ) (12)

respectively. By carrying out the operations in (11) and (12) and using system (2) it can be
verified that (11) and (12) are formally conserved densities and fluxes of the conservation
laws for system (2).D1 and D2 are the total densities of acoustical and optical waves,
respectively,D3 is the total momentum density andD4 is the total energy density of the
system. The first two conservation laws are associated with the gauge symmetry. Whereas
the momentum conservation law is associated with the translation invariance of the system
in space, the energy conservation law is associated with the translation invariance of the
system in time. We cannot conclude whether there exist further conservation laws.

Finally we consider the special case whereνj3 = νj4 = 0 (j = 1, 2) in which, as
we have remarked already, theFWI system reduces to theNLS4 equations. In such a case,
as shown in [4], each wave density is conserved, i.e. theNLS4 equations have at least six
conserved quantities,Dj , instead of four:Dj = |φj |2 (j = 1, 2), Dj = |ψj |2 (j = 3, 4),

D5 = D3 and D6 = D4. The reason for this situation is that theNLS4 equations have
six continuous symmetries. These are translation inτ , translation inξ and the following
gauge symmetry; that is(eiα1φ1, eiβ1ψ1, eiα2φ2, eiβ2ψ2) is a solution of theNLS4 equations
whenever(φ1, ψ1, φ2, ψ2) is a solution.
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3. The modified Hirota method

In [7] and [8] a modified Hirota method has been applied to theNLS2 equations with a
linear birefringence term in order to obtain a new family of solitary wave solutions. This
new family of solitary waves reduces to the classical solitary wave solution of the single
nonlinear Schr̈odinger (NLS1) equation when one of the complex amplitudes vanishes or
two complex amplitudes are equal to each other. In other words, theNLS2 system admits
particular exact solutions, i.e. the mixed-type solutions, which are the well known solitary
wave solutions of theNLS1 equation at the decoupled case. It should also be pointed out
that the linear birefringence term added to theNLS2 equations in [7] and [8] is crucial for the
existence of a qualitatively new family of solitary waves which in its absence reduce to the
single soliton family of theNLS1 equation. The unusual characteristic about the modified
Hirota method in comparison to the classical one [9] is that it begins with a reduction of the
original partial differential equations to the ordinary differential equations by means of a
travelling-wave transformation. Then it involves a series expansion of dependent variables.
As in the classical one, one of the most important aspects of the modified Hirota method
is that it may be possible to truncate the series expansion at a finite number of terms. In
this section we study special solutions of system (2) by using the modified Hirota method
developed in [7] and [8].

We begin by introducing the following simple travelling-wave transformation

φj (ξ, τ ) = φj (ζ ) exp(iχj ) ψj (ξ, τ ) = ψj (ζ ) exp(iχj )

χj (ξ, τ ) = 0jC
2
j τ + v0

20j

(
ξ − v0

2
τ
)

(j = 1, 2) (13)

where v0, C1 and C2 are real constants andφj and ψj (j = 1, 2) are real functions of
ζ = ξ − v0τ alone. Inspection of exactly known limiting cases guides the selection of a
suitable ansatz. The simplest limiting case is the one in which there is no interaction between
the modes and system (2) reduces to four uncoupledNLS1 equations. Thus each field in
the absence of the others may accept the envelope solitary wave solution, with a hyperbolic
secant type intensity, of theNLS1 equation. It should also be noted that acoustical(j = 1)

and optical(j = 2) waves have different phases (i.e.C1 6= C2 and01 6= 02), whereas the
two fields corresponding to each branch are phase locked, which is dictated by the last
terms of system (2). The next step is to substitute the ansatz (13) into system (2) and
use Hirota’s approach to solve the resulting ordinary differential equations. However, this
works for some special values of the coefficients in system (2). For the sake of convenience
we assume that the restrictions imposed on the coefficients of system (2) by the method are
satisfied and we consider the following form of system (2):

iφ1τ + 01φ1ξξ + 01V (|φj |2, |ψj |2)φ1 + γ1(φ2ψ∗
2 − φ∗

2ψ2)ψ1 = 0
iψ1τ + 01ψ1ξξ + 01V (|φj |2, |ψj |2)ψ1 + γ1(φ

∗
2ψ2 − φ2ψ∗

2)φ1 = 0
iφ2τ + 02φ2ξξ + 02V (|φj |2, |ψj |2)φ2 + γ2(φ1ψ∗

1 − φ∗
1ψ1)ψ2 = 0

iψ2τ + 02ψ2ξξ + 02V (|φj |2, |ψj |2)ψ2 + γ2(φ
∗
1ψ1 − φ1ψ∗

1)φ2 = 0 (14)

where the functionV (|φj |2, |ψj |2) is defined by

V (|φj |2, |ψj |2) = δ1(|φ1|2 + |ψ1|2) + δ2(|φ2|2 + |ψ2|2).
Note that in order to reduce system (2) to system (14) the following relations must be
satisfied:

δ1 = 111

01
= ν21

02
= ν22

02
δ2 = 121

02
= ν11

01
= ν12

01
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γ1 = ν13 = −ν14 γ2 = ν23 = −ν24 112 = 122 = 0.

Now substituting the ansatz (13) into system (14) we obtain

φjζζ − C2
j φj + V (φj , ψj )φj = 0 (j = 1, 2)

ψjζ ζ − C2
j ψj + V (φj , ψj )ψj = 0 (j = 1, 2) (15)

where the functionV is

V (φj , ψj ) = δ1(φ
2
1 + ψ2

1) + δ2(φ
2
2 + ψ2

2).

To solve system (15) we apply the modified method by assuming the following forms
of φj andψj in terms of real functionsf (ζ ), gj (ζ ) andhj (ζ ) (j = 1, 2):

φj (ζ ) = gj (ζ )

f (ζ )
ψj (ζ ) = hj (ζ )

f (ζ )
(j = 1, 2) (16)

wheref (ζ ) satisfies the relation

V (φj , ψj ) = 2(ln f )ζζ . (17)

Using (15)–(17) we obtain a set of five coupled equations forf , gj andhj , namely

fgjζζ + gjfζζ − 2fζ gjζ = C2
j fgj (j = 1, 2)

f hjζζ + hjfζζ − 2fζhjζ = C2
j f hj (j = 1, 2)

δ1(g
2
1 + h2

1) + δ2(g
2
2 + h2

2) = 2f 2(ln f )ζζ . (18)

We look for solutions to these equations in the form of a power series in a parameterε

which is introduced simply to keep track of the terms in the expansion:

f = 1 +
∞∑

m=1

f (n)εn gj =
∞∑

m=1

gj
(n)εn hj =

∞∑
m=1

hj
(n)εn. (19)

Solutions such that the series terminates after a finite number of terms will now be looked
for. Substitution of (19) into system (18) gives the following first-order problem

f
(1)
ζ ζ = 0 gjζζ

(1) − C2
j gj

(1) = 0 hjζζ
(1) − C2

j hj
(1) = 0

for which a solution is

f (1) = 0 gj
(1) = 2Aj exp(θj ) hj

(1) = 2Bj exp(θj ) (20)

where

θ1 = C1(ζ − ζ1) θ2 = C2(ζ − ζ2)

with ζ1 andζ2 arbitrary constants.
For second order inε, taking into account (20), we find

fζζ
(2) = 2δ1(A

2
1 + B2

1) exp(2θ1) + 2δ2(A
2
2 + B2

2) exp(2θ2)

gjζζ
(2) − C2

j gj
(2) = 0 hjζζ

(2) − C2
j hj

(2) = 0

which gives

f (2) = σ1 exp(2θ1) + σ2 exp(2θ2) gj
(2) = 0 hj

(2) = 0 (21)

where

σj = δj (A
2
j + B2

j )

2C2
j

.
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We now proceed to the third-order problem. Using the results (20) and (21) previously
obtained we find

f
(3)
ζ ζ = 0

g1ζ ζ
(3) − C2

1g1
(3) = 8A1σ2C2(C1 − C2) exp(θ1 + 2θ2)

h1ζ ζ
(3) − C2

1h1
(3) = 8B1σ2C2(C1 − C2) exp(θ1 + 2θ2)

g2ζ ζ
(3) − C2

2g2
(3) = −8A2σ1C1(C1 − C2) exp(2θ1 + θ2)

h2ζ ζ
(3) − C2

2h2
(3) = −8B2σ1C1(C1 − C2) exp(2θ1 + θ2)

which gives

f (3) = 0

(g1
(3), h1

(3)) = 2(A1, B1)σ2
C1 − C2

C1 + C2
exp(θ1 + 2θ2)

(g2
(3), h2

(3)) = −2(A2, B2)σ1
C1 − C2

C1 + C2
exp(2θ1 + θ2).

In a similar manner we get the following fourth-order problem

f
(4)
ζ ζ = 4σ1σ2(C1 − C2)

2 exp(2θ1 + 2θ2)

gjζζ
(4) − C2

j gj
(4) = 0 hjζζ

(4) − C2
j hj

(4) = 0

which gives

f (4) = σ1σ2

(
C1 − C2

C1 + C2

)2

exp(2θ1 + 2θ2) gj
(4) = 0 hj

(4) = 0.

Simple but tedious algebra then shows that the right-hand side of the fifth-order problem is
identically zero so that we can choosef (5) = gj

(5) = hj
(5) = 0. Furthermore, at this point

we assume that the series can be truncated, that is all the higher order terms can be set to
zero. Then puttingε = 1 we have an exact solution of (18) in the form

f (ζ ) = 1 + σ1 exp(2θ1) + σ2 exp(2θ2) + σ1σ2

(
C1 − C2

C1 + C2

)2

exp(2θ1 + 2θ2)

gj (ζ ) = Ajvj (ζ ) hj (ζ ) = Bjvj (ζ ) (22)

where

v1(ζ ) = 2 exp(θ1)

[
1 + σ2

C1 − C2

C1 + C2
exp(2θ2)

]
v2(ζ ) = 2 exp(θ2)

[
1 − σ1

C1 − C2

C1 + C2
exp(2θ1)

]
.

Substitution of (22) into (18) verifies that this is indeed a solution, thus justifying our
assumption.

If the following conditions are assumed:

C2
j = δj

2
(A2

j + B2
j ) (23)

in which σ1 = σ2 = 1, we obtain from (22) and (16)

φj (ζ ) = Ajuj (ζ ) ψj (ζ ) = Bjuj (ζ ) (24)
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or, from (13), explicitly

φj (ξ, τ ) = Ajuj (ξ, τ ) exp

{
i

[
0jC

2
j τ + v0

20j

(ξ − v0

2
τ)

]}

ψj (ξ, τ ) = Bjuj (ξ, τ ) exp

{
i

[
0jC

2
j τ + v0

20j

(ξ − v0

2
τ)

]}
(25)

whereu1 andu2 are given by

u1(ζ ) = 2 exp(θ1)[1 + ((C1 − C2)/(C1 + C2)) exp(2θ2)]

1 + exp(2θ1) + exp(2θ2) + ((C1 − C2)/(C1 + C2))2 exp(2θ1 + 2θ2)

u2(ζ ) = 2 exp(θ2)[1 − ((C1 − C2)/(C1 + C2)) exp(2θ1)]

1 + exp(2θ1) + exp(2θ2) + ((C1 − C2)/(C1 + C2))2 exp(2θ1 + 2θ2)
. (26)

These solutions are very similar to those obtained for theNLS2 equations with a linear
birefringence term in [7] and [8]. However, while they show the mixed-type solutions,
which are bound states of two solitary waves which separately have constant and uniform
orthogonal linear polarizations, in [7] and [8], here they show the mixed-type solutions
which are bound states of two solitary waves which separately belong to two different (i.e.
acoustical and optical) branches. In order to see this we consider two special cases in which
system (14) reduces to theNLS2 equations.

Case (i). There exist waves corresponding to the acoustical branch only in the medium.
That is, A2 = B2 = 0 and consequentlyφ2(ζ ) = ψ2(ζ ) = 0. In such a case,C2 = 0 and
we obtain the following solitary wave solution:

φ1(ζ ) = A1 sech[C1(ζ − ζ1)] ψ1(ζ ) = B1 sech[C1(ζ − ζ1)] (27)

whereC1 is given by (23). Thus (27) describes the solitary wave solution with position of
maximumζ1 and differentA1 andB1 amplitudes in the transverse directions.

Case (ii). There exist optical waves in the medium only. That is,A1 = B1 = 0 and
consequentlyφ1(ζ ) = ψ1(ζ ) = 0. In such a case,C1 = 0 and the following solitary wave
solution is obtained:

φ2(ζ ) = A2 sech[C2(ζ − ζ2)] ψ2(ζ ) = B2 sech[C2(ζ − ζ2)] (28)

whereC2 is given by (23). Thus (28) represents the solitary wave solution with position of
maximumζ2 and differentA2 andB2 amplitudes in the transverse directions.

Then one can think that (25) describes a mixed-type solution for system (14), which
represents a superposition of two solitary waves correponding to the acoustical and optical
branches at the decoupled case.

Finally we consider the case whereC1 = C2 = C. In such a case we obtain from (22)
and (16)

φj (ζ ) = Aj sech[C(ζ − ζ0)] ψj (ζ ) = Bj sech[C(ζ − ζ0)] (29)

whereζ1 = ζ2 = ζ0 andC is given by

C2 = δ1

2
(A2

1 + B2
1) + δ2

2
(A2

2 + B2
2)

which corresponds to the case whereσ1 + σ2 = 1. The above solution is the same as that
obtained in [4] by using a direct substitution technique.
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4. Conclusions

In this paper, we systematically investigated some analytical properties of the four-wave
interaction equations derived previously by the present authors. We showed that the
equations have a Hamiltonian structure and there exist at least four conservation laws. Also,
the mixed-type solutions of the equations were constructed by using a modified Hirota
technique. It is hoped that the results obtained here will help to understand interesting
dynamical behaviour of theFWI system through numerical simulations.
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